Gott. C: Deene
HIER-GRP: AA Computer Progran for the Hierarchical
IRSTITOTION
REPORT NO
PUB DATE NOTE

EDRS PRICE DESCRIPTORS

Grouping of Regresion Equationg.: Air Porce Human Resources Lab., bicocks ArB, texas: AFHRI-TR-7.8-14 Jun 78
28p. : Appendices' C and D are not legtele
MF-\$0.83 HC-\$2.06 plus postage.
Alqorithms; *Cluster Analysis; *Computer Erograms; * multiple Reqrësion Analysis: statistical Analysis

ABSTRACT
This description of the technical detaile required for using the $H I R_{R-G F P}$ computer program, which was develcfed tc group or cluster reqression equations in an iterative maner zo as to minime the overall loss of predictive efficiency at each iteration, contains a discussion of the basic alqcrithm, on outline of the essential steps, specifications of the ccaputer system reguirements. descriptions of necessary control cards, and explanaticne of the proqran output. Appendices include the wathematical formulas used. some mathematical back qround helpful for understanding the algorithm, sample output, and a complete source card listang. (Authci/RAO)

$\sqrt{4}$ 4. TITLE (End Subillie)
 HIER-GRP: A COMPUTER PROGRAM FOR THE HIERARCHICAL GROUPING OF REGRESSION EQUATIONS

PROGRAM ELEMENT, PROJECT, TASK
AREAA WORK UNIT NUMBE AS

June 1978
13. NUMBER OF PAGES
70

15. SECURITY CLASS. (of this report)
Unclassified
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIGUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited,

18. SUPPLEMENTARY NOTES .
19:- KEY WoR̄s (Conilnue on reverre side il noceanary and idenilly by block number)
computer-based algorithm
policy capturing
computer program
grouping
hierarchical grouping
judgment analysis
20. AESTRACT (Continue on reverse aldo il necosary and Idantily by block numbor)

This report describes the technical details required for using the HER-GRP computer program as it is currently operational on the Univac 1108 computer system at the Computational Sciences Division, Air Force Human Resources Laboratory, Brooks Air Force Base, Texas. HIER-GRP (or one of the earlier versions of the program) has been used extensively by the Air Force in the past, especially in conjunction with "policy-capturing applications," and many of those applications are referenced herein. The report contains a discussion of the basic algorithm, an outline of the essential steps, specifications of the computer system requirements, descriptions of necessary control cards, and explanations of the program output. Also; appendices are included that contain the mathematical formulas used, some mathematical background helpful for understanding the algorithm, sample output, and a complete source card listing.

This research was completed under project 6323, Personnel Data Analyses; task 632305, Development of Analytic Methodology for Air Force' Personnel Research Data.

In addition to the acknowledgments expressed in the introduction section of this report, the author wishes to give special credit to Mr. William S. Mathon for his numetous and valuable contributions to thls project. Mathon performed the majorty of the necessary programming tasks and prepared the basic text for Appendix B: Others who deserve mention include Mr, Larry K. Whitehead and Ms. Deana J. Olden for programming modifications and AIC Susan E. Tobey and Ms. Doris E. Black for technical editing. Finally, appreciation goes to Ms Dorothy M. Cobern and Ms. Laurel J. Betz for typing and proofreading the draft report.

HIER-GRP: A COMPUTER PROGRAM FOR THE HIERARCHICAL GROUUPING OF REGRESSION EQUATIONS

HIER-GRP, arit acronym for hierarchical grouping, is a computer program which was developed for various Air Foroe research purposes at the Computational Sciences Division, Air Force Human Resources Laboratory, Broolks AFB, Texas. Given a starting set of k regression equations, each of which contains the same criterion and predictor variables, the basic objective of the HIER-GRP algorithm is to group or to cluster the equations in a stepwise or iterative manner so as to minimize the overall loss of predictive efficiency at'each iteration. Initially there are k separate groups; i.e., each of the k equations is considered as a group by itself, and a measure of overall predictive efficiency is computed, At the first iteration all possible ways of combining any two of the equations from the total k equations are examined, and that combination providing the minimum, oss of overall predictye efficiency is selected to form a "new group." Formation of the new group reduces the number of equ is to $k=1$ for the start of the second iteration. The process' continues until only one final group remains ard is "hierarchical" in the sense that the pattern of the number of groups from start to finish is $\mathrm{k}, \mathrm{k}-1, \mathrm{k}-2, \ldots, 1$.

The mathematical theory upon which HIER-GRP is based is documented in an Air Force pubication entitled An Iterative Technlque for Clustering Criteria Which Retains, Optimum Predictive Efficiency by Robert A. Bottenberg and Raymond E. Christal (3). Early developmental work was also accomplished by Joe'H. Ward, J., (16), and some of the original hogramming was done by Daniel D. Rigney.

HIER-GRP or one of the earlier versions of the program has been used extensively by the Air Force in the past, especially in conjunction with "policy-capturing applications." Policy-capturing is \&hethodology. composed of multiple linear regression analysis and hierarchicial grouping procedures $(1,3,4,6,7,14,16$, 17, and 18). In this context, HIER-GRP was used in the development of the Weighted Airman Promotion System (WAPS) (10) and later in the reevaluation of WAPS (12 and 13). The program was also used in developing officer grade requirements (9), a promotion system for alrman basics (2), a screening system, for the Air Reserve Forces (8), and a senior NCO promotion system (11).

This report describes the technical details that are required for the use of the HIER-GRP program as it is currently operational on the Univac 1108 computer system at the Computational Sciences Division. The basic algorithm is first discussed, and the essential steps'are outlined. Details of the computer system requirements and descriptions of necessary' control cards are then presented. Next, the output of HIER-GRP is explained. Appendiees are included that contain the mathematical formulas used in the program, some mathomatical background helpful for understanding the algorithm, sample output, and a complete source card listing of the program,

Partly as a result of the research studies referenced above, requests for copies of the HIER-GRP computer program and associated documentation from different Air Force agéncies, other governmental organizations, colleges, and universities have been numerous. Since 1969, approximately twenty copies of HIER-GRP have been provided to different requesters and implemented on a variety of different computer systems. One purpose of this report is to provide a document which can be used to satisfy any future requests for HIERGRP:
iI. BASIC ALGORITHM

This section describes the basic structure of the HIER-GRP algorithm. The redat is referted to Appendix A for computational formulas mentioned in the various steps and to Appendix B for more detailed mathematical considerations.

The basic steps of the HIER-GRP algorithm can be summarized as the following five phases ' (a) data input and program termination, (b) computation of the overlap matrix, (c) determination of the order of clustering, (d) computation' of the statistics for the initial k criteria, and (e) iteration to reduce the number of criteria. Each of these phases is described in the following steps. The steps are to bo followed in numeric order unless indicated otherwise.

Steps 1-2, Data Input and Program Termination

1. Read "Problem Definition Card" This card defines k, the number of criteria or regression equations to be grouped and the number of standardized regression (beta) weights in each equation. If no Problem Definition Card is read, terminate the program.
2. Read in the number of cases; the criterion means and standard deviations, the standardized regression weights, the validities, and the predictor means and standard deviations for each equation. Assign each equation the identification numbers. 1 through k, respectively,"according to the order in which the) equations were read.

Step 3. Computation of the Overlap Matrix.

3. Compute the -overlap matrix A , where each element a_{ij} denotes the decrease in overall predictive efficiency if equation i is combined with equation j; for $i=1,2, \ldots, k, j=1,2, \ldots, k$, and $i \neq j$. The diagonal elements of A ire undefined and the elements above the diagonal are symmetric with those elements below the diagonal.

Steps 4-8. Determination of the Order of Clustering

4. 'Set NGRPS, the index denoting the current number of groups; equal to k . Initially each criterion (equation) belongs to a separate cluster.
5. Considering all clusters present at the NGRPS stage, select two of the clusters denoted by i and j. such that:
a. $a_{i j} \leq \mathrm{a}_{\mathrm{lm}}$ where ℓ and m are the identification numbers of any cluster ${ }^{\text {present }}$ the NGRPS stage and $\ell \neq \mathrm{m}$, and
b. i<j. This can be accomplished byerxamining the elements above the diagonal of the overlap matrix and selecting the smallest element.
6. Form a new criterion cluster from the old clusters i and j identified in Step 5. Record the identifications of the two clusters i and j in the storage areas $\mathrm{IU}_{\text {NGRPS }}$ and $\mathrm{JU}_{\text {NGRPS }}$ respectively. Assign the new cluster the identification number i.
7. Decrement NGRPS by 1. If NGRPS >1, go to Step 8 ; otherwise proceed to Step 9 .
8. Update the overlap matrix as follows. For each $\ell, \ell \neq i$ of Step 6 where ℓ is the identification number of a criterion cluster present at the NGRPS stage, compute the decrease in overall predictive efficiency if equation ℓ is combined with equation i. Since NGRPS was reduced by 1 in Step 7, the dimension of the updated overlap matrix will be reduced by 1 . Return to Step 5 .

Step 9. Computation of the Statistics for the Initial k Criteria

9. Compute the squared multiple correlation coefficient for each of the initial k reqression equations and, also, $\mathrm{ORU}_{\mathrm{k}}$, the overall squared multiple correlation coefficient obtained by considering a regression model with no grouping of initial equations.
10. Form an Initial grouping of the k equations by assigning each equation to a group by itself. This is the " k groups" stage. Set NGRPS equal to k.
1.1. Form a new grouping of the k equations by following the grouping order established in Steps -4-8. This is acqomplished by combining the groups identified by $\mathrm{IU}_{\text {NGRPS }}$ and $\mathrm{JU}_{\text {NGRPS }}$ and assigning. the new group (criterion cluster) the identification number in $\mathrm{UU}_{\mathrm{NGRPS}}$:
11. Compute the least squares'regression equatiori which can be used to predict the new group and decrement NGRPS by i.
i3. Print all statistics concerning the new grouping including:
. . . 1
a. the identification numbers of the two equations combined at this iteration,
b. An F value testing the difference between the prediction equations for the two clusters in. (a),
c. An F value testing the difference between the k initial prediction equations and the smaller set of NGRPS equations (one for each cluster) used at the "NGRIS groups" stage, and
d. - the overall squared multiple correlation coefficient obtained using the NGRPS equations at this stage-
12. Print a summary of all groups (clusters) present at the NGRPS stage. Asso; print the prediction equation for the new group (including standardized and raw scere weights).
13. If NGRPS >1, loop back to Step 11 ; otherwise, retum to Step 1 and begin the next problem.

The HIER-GRP program is composed of seven routines-the main or driver routine and six subroutines. The entire program, with the exception of the Univac Assembly Langypge şubroutinc START, is written in FORTRAN IV. The assembly subroutine START is called once at the beginning of the driver routine and is never called again. Its "only function is to reset the margin efntrol on the Univac 1108 printer.

The Univac version of FORTRAN has a special statement, the Parameter statement, which is used in the driver routine and which may not be available on other computers. The Parameter statement is used to define thedinensions of arrifs at compilation time. The Parameter statement can be removed if each array is dimensioned to its required size.

The complete IIIER-GRP prograr requires approxifitiaty 10,00036 -bit words of core.storage in addition to the number of words required fot arrays. If P is the number of predictors and $1:$ is the number of equations, then the anount of storage required for arrays is $12 \mathrm{E}+3 \mathrm{P}+[2 \cdot \mathrm{E} \cdot \mathrm{P}]+[\mathrm{E} \cdot(\mathrm{E}-1) / 2]+14$. For example, if $\mathrm{P}=50$ and $\mathrm{E}=50$, then 6,989 words of storage are required for arrays: -

There are a total of 1,121 cards in the IILER-GRP program deck. Of these, only 601 are source nguage cards and the remainder are comments cards. Thie number of eards and the intrinsic system routines required in each of the seven routines which make up HIPR-GRP are listed in Table 1 .

- Table 1. Chuncterbatici of the HIER-GRP Routines

$\begin{aligned} & \text { Propram } \\ & \text { Nommo } \end{aligned}$	tevre L-9mut	Number of tourae Lamusit Cardi .		$\begin{aligned} & \text { Numbir of } \\ & \text { Commem card } \end{aligned}$	inirinela byitem Coutioes Required
DRIVER (MAIN)	FORTRAN IV		100	311	None
START	ASSEmbly		7	0	None
OVRLP	Fortran IV		36	36	None
GROUP	Fortran iv		76.	48	None
STAGE.	Fortran iv		81	42	None
PRINTG	fortran iv		218	82	SORT
PLEVEL	FORTRANIV		83	1	ATAN, SQRT, ALCK, EXP. SIN

AHER.GRP user must supply the following, data for each reqression equation:

1. The number of cases (N) which were used to compute the cquation
2. The criterion mean and standard deviation (SD)
3. The standardized regession weights
4. The validity coefficients (correlations of predictor or independent variabtes with the criterion or dependent variable)
5. The predictor means and standard deviations,

The computational formulas developed by Bottenberg and Chrisal (3) and used within the program assume that the predictor sums-ofsquares and cross-products matrices are proportionabice, that the ratios of the corresponding elements of the sums-ofsquares and cross producis matrices for any two equations to be clustered are equal to the ratio of the corresponding numbers of the cases within cach equation. This dssumption of proportionality is discussed in detail by Botenberg and Christal (1中ol, see pages 8 through 11) and also addressed in Appendix B (see equation 9b) of this report. In practice this assumption is met by selecting items'(1) and (5) of the previeus parigraph to be identical for cach equation.

RunStream Organization

The following card sequence is required to use the HEM. (GRP program as it is operational on a Univac 1108 computer:

Order - Card Type

1. (${ }^{(n R y} / \mathrm{N}$
2. ${ }^{(\omega \text { XQT T*T.HILR.GRP }}$
3. Problem Deftitition Card
4. Header Card(s)
5. Format Card for Equation Ns
6. Data Card(s) - Equation Ns
7. Format Card for Criterion Mcans and Slls
8. Data Card(s) -Criterion Mcans and SDs
9. Format Card for Beta Weights

Io. Data Card(s) Bofa Weights
11. Format Gard for Vilylities

10
12. Data Card (1) - Validities
13. - Formal Card for Predictor Means and SDi.
14. Dina Card (s) - Predictor Means and 8D,
15. The sequence of aida 3 : 14 is required for each run.

As many problems an desired may be run by stacking one problem after another.
16. Blank' Card to Terminate Rum
17. BIN

The Univac 1108 Systems Cards (1,2, and 17) are describoll in the Univac Exec 8 Reference Manual (15). Descriptions of card $3 \mathbf{1 6}$ are presented in the next section. See Appendix C for ample nun-stream and ample control cards.

Control Cardin.

Header Cards

mach header carl will be printed only once at the beginning of the grouping report Exactly NIIDRS header cards must be present

Forman mid Deta Corda :

I. Aormal Canl for Fiquathon Ns. This card supples the PORTRAN vapiable furmal by which the number of canen used in the computation of each equation is to he read, Only the F and X editing conles are permilted.
2. Vhate Condi(s) Fquation Na. Theve cards trad according to the previous foimat card The number of caths requited depends on the format apecthentoms.

1. 3. Aiormat Card for Crtiethon Means and SISs. This card prowdes the FORTRAN variable format by when the criterion mean and standard deviation for each cquation ale to be read. Only the F and X editing ooded are pernitited. ;:

 dependeromithe fuimat apecilications
 validity wefficente tor each equation are ceal toly the I and X culiting coderare promitted

 on the format spectications.
 which the preduction mans ant samban dexathons tor rall conation are to be erad Onty the land x editing condes are permitted

Gintput

Monegramand Vervion Date

$$
7
$$

ConntrolCond Parameter

The problem header lahel, If header cards were specified on the Problem Defindion Card, is printed under the heading PROBLEM HEAbER LABEL.

Formet and Input Data Cardn

All format cards and all input data are pinted under the heading IORMAT CARDS AND INPUT DATA. lifst, the format statements used to read the number of cases and the criterlon means and standard devations for each equation are printed. A table listing the equation numbers, the number of cases, the criterion nieans, and the criterion standard deviations is printed next. Third, the format statement used to read the beta weighis and a table lialing the equation nimber and the beta weights (i5 per line) for each equallon are printed. Fourth, the format statement used to read the validhy coefficients, and a table listing the equation nimber and the validities (15 per line) for each equation are pointed. Fiftally, the format statement used (1) read the predictor means and standard deviations and a table listing the predictor variable number and predictor means and standard deviations (one cach per life) are printed.

Citterion Grouping Renults

The resulte of the chistering process are printed under the heading IIIR ARCIICAL GROUPING RESULTS. The output in this division can be separated into three parts - the grouping option description, the R-muare (RSO) smimbiny for the NFOS mitial criteria, and the results of cach lieration. Each of these sectiona is described as follows.
\therefore I. (irmuping Option Description. The pouphing aption and a verbal description of the grouping option spedfied or (he Problent Detinition Card are pinted.
2. RSY Summary, fir the NLQS milial Critrria. The number, NISQS, of initial criterla; the overall RSO, ORV Nige achieved by using the beta weights specified on the input data cards; and a table listing the equation mumber and the BSO for each equation are printed.
3. Results of lach fleriotion. The statistics and tables printed at ench iterationste, the information pronted helow each row of isterisks is listed as the following in Table 2.

Table 2. Output for Each Iteration

- CHANGE FROM $\ell+1$ SYSTEMS
$R S Q=O R U_{Q+1}-$ QRU $_{\ell}$
$\mathrm{DF}=\mathrm{NPREDS}+1$
RESIDUAL
$\mathrm{RSQ}=1-\mathrm{ORU}_{Q+1}$
$\mathrm{DF}=\mathrm{N}-(\mathrm{l}+1)(\mathrm{NPREDS}+1)$
$*$

The decrease in the number of parameters estimated from stage $\ell+1$.

The proportion of the criterion varimce attibutable to error at stage $\ell+1$.
The total number of cases less the number parameters estimated at stage \& +1 . Equivalently, DF is the number of degrees of freedom associated with the ergor portion of the criterion variance at stage $\ell+1$,

The $\dot{\mathbf{F}}$ statistic testing the hypothesis described in the prgceding paragraph (IOR SYS'S COMBINED A'T THIS STACE)

SIG LVL

ETEST FOR THE EQUALITY OF REGRESSION PARAMETERS FOR SYS'S COMBINED UP TO THIS STAGE Table

The probability that a value of the $\overline{\mathrm{F}}$ statistic greater than FSTAT would occur by chance, A value of SIG LVL equal to α means that if the hypothesis being tested is true, then a value of the F statistic greater than FSTAT would have occurred 100α percent of the time by chance. Therefore, small values of α tend to reject the hypothesis being tested.
This table outlines a test of the hypothesis that the prediction equations for all members of criterion clustey number 1 are identical, the prediction equations-for all members of eriterion cluster 2 are identical, and so on for the ℓ criterion clusters present at the end of this iteration. Equivalently , this tests the loss in predictive efficiency when ℓ equations (one for each criterion cluster) are used to predict the NEQS initial criteria instead of the original NEQS equations.
Change from neqs systems
$R \mathrm{RSQ}=\mathrm{ORU}_{\text {NEQS }}-\mathrm{ORU}_{\ell}$
$\mathrm{DF}=(\mathrm{NEQS}=\ell)($ NPREDS +1$)$

RESIDUAL
RSQ $=1-$ ORU $_{\text {NEQ }} \mathrm{S}$
$D F=N(N E Q S)(N P R E D S+1)$
The decrease in OVERALL RSQ from stage NEQS.
The decrease if the number of parameters estimated from stage NEQS.

The proportion of the criterion variance attributable to efror at stage NEQS.
The total number of cases less the number of parameters estimated at stage NEQS. Equivalently, DF is the number of degrees of freedom associated with the error portion of the criterion variance at stage NEQS.
FSTAT $=\left[\left(\right.\right.$ ORU $_{\text {NEQS }}-$ ORU $\left._{Q}\right) /($ NEQS - - $)($ NPREDS +1$\left.)\right]$
/[(1-ORUNEQS)/(N-(NEQS)(NPREDS+1))].
The F statistic testing the hypothesis described in the preceding paragraph (FOR SYS'S COMBINED UP TO THIS STAGE) ${ }^{\circ}$

SIG LVL

SYSTEMS SUMMARY ROSTER Table
The probability that a value of the F_{n} statistic greater than FSTAT would oecur by chance. A value of SIG ${ }^{1}$. VL equal to α means that if the hypothesis being tested true, then a value of the F statistic greater than STAT would have occurred 1000 percent of the time by chance. Therefore, small values of α tend to rejeet the hypothesis being tested.
The summary roster is a listing of all the criterion elusters present at the end of the current iteration. The menbers and the RSQ for each cluster are also printed. In addition, the prediction equation and the system mean and standard deviation for the new criterion chaster formed at the present iteration are printed. The conipromise equation for each criterion cluster present at a giveni iteration can be obtained by referring to the summary roster for the stage at which the cluster was formed.

Table 2. (Continucd)

REFERENCES

1. Anderberg, M.R. Cluster analysis for applications. OAS-TR-72-1, AD-738-301, Kirtland AFB, NM: Office of the Assistant for Study Support, January, 1972.
2. Black, D.E. Development of the E-2 weighted airman promotion system, AFHRL-TR-73-3, AD-767 195. Lackland AFB, TX: Personnel Research Division, Air Force Human Resources Laboratory, April 1973.
3. Bottenberg, $\overline{\mathbf{R}}, \mathbf{A}$, \& Christal, R.E. An interative technique for clustering criteria which retains optimum predictive efficiency. WADD-TN $61=30$, $\mathrm{AD}-261$ 615. Lackland AFB, TX: Personnel - Laboratory, Wright Air Development Division, March 1961. Also, Journal of Experimental Education, Sụmmer 1968, 36(4), pp. 28-34,
4. Bottenberg, R.A:, \& Ward, J.H:, Jr. Applied multiple linear regression. PRL-TDR-636, AD-413 128. Lackland AFB, TX: 6570 th Personnel Research Laboratory, Aerospace Medical Division, March 1963.
5." Brown, B. Simple comparisons of simultaneous regression lines. Biometrics, 1970, 26, pp. 143-144.
5. Christal, R.E. JAN: A technique for analyzing group judgment. ${ }^{2}$ PRL-TDR-63-3, AD-403 813. Lackland AFB, TX: 6570th Personnel Research Laboratory, Aerospace Medical Divisionn, February 1963.
6. Christal, R.E. Selecting a harem-and other applications of the policy-capturing model. PRLTDR-67-1, AD-658 025. Lackland AFB, TX: Personnel Research Laboratory, Aerospace Medical Division, March 1967.
7. Gott, C:D. Development of the weighted airman screening system for the air reserve forces. AFHRL $\operatorname{TR}=74=18$, AD-781 747. Lackland AFB, TX: Computational Sciences Division, Air Force Human Resources Leporatory, March 1974.
8. Hazel, J.T., Christal, R.E., \& Hoggati, R.S: Officer grade requirements project: IV. Development and validation of a policy equation to predict critérion board ratings. PRLTR-66-16, AD-659 125. Lackland AFB, TX: Personnel Research Laboratory, Aerospace Medical Division, November 1966.
9. 'Koplyay, J:B. Field test of the weighted airman promotion system: Phase I. Analysis of the promotion board component in the weighted factors system. AFHRLTR-69-101, AD-689 751. Lacklant AFB, TX: Personnel Research Division, Air Force Human Resources Laboratory, April 1969.
10. Koplyay, J.B., Albert, W.G., \& Black, D.E. Development of a senior NCO promotion system. AFHRL-TR-76-48, AD-A030 607. Lackland AFB, TX: Computational Sciences Division, Air Force Human Resources Laboratory, July 1976.
11. Koplyay, J.B., \& Gott, C.D. Reevaluation of the operational weighted airman promotion system for grades E-5 through E:7. AFHRL-TR-73-25, For Official Use Only. Lackland AFB, TX: Computational Sciences Division, Air Force Human Resources Laboratory, November 1973.
12. Koplyay, J.B., \& Gott ${ }_{n}$ 'C.D. Revalidation of the factors which comprise the $E=5 / E=7$ weighted airiman promotion system (WAPS) AFHRL-TR-77=80, For Official Use Oñly, Brooks AFB, TX: ${ }^{\text {(}}$ Computational Sciences Division, Air Force Human Resources Laboratory, Decen'ber 1977.
13. Martin, F.B., \& Zyskind, G. On Combinability of Information from Uncфrrelated Linear Models by Simple Weighting: Annals of Mathematical Statistics, Aug-Dec 1966, 37, pp. 1338=1347.
14. Sperry Rand Corporation. Univac 1100 Series Operating System, Programmer Reference, UP-4144 Rev. 3, 1974.
15. Ward, J.H., Jr: Mierarchical Grouping to Maximize Payoff. WADD-TN-61-29, AD-261 750. Lackland AFB, TX: Personnel Laboratory, Wright Air Development Division, March 1961.
16. Welch, B.L. Some problems in the analysis of regression amiong K samples of two variables. Biometrika, 1935, 27, pp. 145-160.
17. Wilson, J.W., \& Carry, L.R. Homogeneity of regression - its rationale, computation, and use. American Educational Research Journal, 1969, 6, pp. 80-90.

BIBLIOGRAPHY

1 Carter, A.H. The estimation and comparison of residual regressions where there are tho or more : related sets of observations. Blometrika, $1949,36, \mathrm{pp} \cdot 26=46$:
2. Chaud, U. Distributions related to comparison of twô means and regression coefficients. Annals of Mathematical Statistics, 1950, 21, pp. 507-521.
3. Chipman, J.S., \& Rao, M.M. The treatment of linear restrictions in regression analysis: Ecopometrica, Jan=Apr 1964, 132(1-2), pp. 198-209.
4. Fraser, A.S. The Behrens-Fisher problem for regression coefficients. Annals of Mathematical Statistics, 1953, 24, pp. 390-402.
5: Geeslin, W.E. Comment on homogeneity of regression. American Educational Research Journal, 1970, 7, pp. 636-638.
6. Kendall, M.G., \& Stuart, A. The advanced theory of statistics, Vol. 2, Inference and relationship (Vol. 2), New York: Hafnef, 1961.
7. Kullback, S., \& Rosenblatt, H.M. On the analysis of multiple regression in K categories. Biometrika, 1957, 44, pp. 67-83.
8. Rao, C. \mathbf{R}. Linear statistical inference and its applications. New York: Wiley, 1965.
9. Robson, D.S., \& Atkinson, G. \dot{F}. Individual degrees of freedom for testing homogeneity of regression coefficients in a one way analysis of covariance. Biometrics, 1960, 16, pp $/ 593-605$.
10. Theil, Hffinciples of econometrics New York: Wiley, 1970.
11. . Williams, E.G. Regression analysis. New York: Wiley, 1959,

The transpose of the associated matrix.

k, The initial number of criteria.
p, The number of variables.
n_{i}, The number of cases used in the computation of the regression equation for criterion i.
m_{i}, The mean for criterion i .
σ_{i}^{2}, The variance for criterion i .

$\hat{\alpha}_{i}$, The constant term in the regression equation for criterion i.
\hat{b}_{i}, The pxl vector of regression weights for criterion i.
\hat{p}_{i}, The pxi vector of standard regression weights for criterion i .
c_{i}. The pxl vector of validities (intercorrelations between the criterion and the p independent variables). for criterion i .
N , The total number of cases $\mathrm{N}=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{k}}$
m_{0} The pooled criterion mean $\mathrm{Nm}_{\mathrm{O}}=\mathrm{n}_{1} \mathrm{~m}_{1}+\mathrm{n}_{2} \mathrm{~m}_{2}+\ldots+\mathrm{n}_{\mathrm{k}} \mathrm{m}_{\mathrm{k}}$
σ_{0}^{2}, The pooled criterion variance

$$
\mathrm{N} \sigma_{\mathrm{o}}^{2}=\mathrm{n}_{1}\left(\sigma_{1}^{2}+\mathrm{m}_{1}^{2}\right)+\ldots+\mathrm{n}_{\mathrm{k}}\left(\sigma_{k}^{2}+\mathrm{m}_{\mathrm{k}}^{2}\right)-\mathrm{Nm}_{\mathrm{o}}^{2}
$$

g_{l}, The number of criteria in cluster I .
I, The set of criteria in cluster $I . I=\left\{i_{1}, i_{2}^{\prime}, \ldots,{ }^{g_{1}}\right\}$. In the succeeding definitions, let I be the union of çlusters \mathbf{J} and $\mathrm{L}, \mathrm{J} \mathrm{U}$ L.
N_{I}, The number of cases used in the computation of the composite equation for cluster I.

$$
N_{I}=\sum_{i \in I} n_{i}=N_{J}+N_{L}
$$

M_{V}, The criterion mean for cluster I.

$$
N_{I} M_{I}=\underset{i \in!}{\Sigma} n_{i} m_{i}=N_{J} M_{J}+N_{L} M_{L}
$$

σ_{i}^{2}, The criterion variance for cluster I .

$$
\dot{N}_{\mathrm{I}}^{\sigma_{\mathrm{I}}^{2}}=\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{n}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}^{2}+\mathrm{m}_{\mathrm{i}}^{2}\right)-\mathrm{N}_{\mathrm{I}} \mathrm{M}_{\mathrm{I}}^{2} \equiv \mathrm{~N}_{\mathrm{J}}\left(\sigma_{\mathrm{J}}^{2}+\mathrm{M}_{\mathrm{J}}^{2}\right)+\mathrm{N}_{\mathrm{L}}\left(\sigma_{\mathrm{L}}^{2}+\mathrm{M}_{\mathrm{L}}^{2}\right)-\mathrm{N}_{\mathrm{I}} \mathrm{M}_{\mathrm{I}}^{2}
$$

$\hat{\alpha}_{\mathbf{l}}$, The constant term in the regression equation for cluster I.

$$
N_{\Gamma} \hat{\alpha}_{\mathrm{I}}=\sum_{i \in \mathrm{I}} n_{i} \hat{\alpha}_{\mathrm{i}}=\mathrm{N}_{\mathrm{J}} \hat{\alpha}_{\mathrm{J}}+\mathrm{N}_{\mathrm{L}} \hat{\alpha}_{\mathrm{L}}
$$

\hat{b}_{I}, The pxi vector of regression weights for cluster I .

$$
N_{I} \hat{b}_{I}=\sum_{i \in I} \hat{n}_{i} \hat{b}_{i}=N_{J} \hat{b}_{J}+N_{L} \hat{b}_{L}
$$

$\hat{\beta}_{\mathrm{T}}$, The pxl vector of standard regression weights for cluster I .

$$
\mathrm{N}_{\mathrm{I}} \sigma_{\mathrm{I}} \sigma_{\mathrm{I}}=\sum_{\mathrm{i} \in \mathrm{I}} n_{\mathrm{i}} \sigma_{\mathrm{i}} \hat{\beta}_{\mathrm{i}}=\hat{N}_{\mathrm{J}} \sigma_{\mathrm{J}} \beta_{\mathrm{J}}+\mathrm{N}_{\mathrm{L}} \sigma_{\mathrm{L}} \hat{\beta}_{\mathrm{L}}
$$

c. . The pxl vector of validities for cluster I.
$\bullet 1 \quad N_{I} \sigma_{I} c_{I}=\sum_{i \in I} n_{i} \dot{\sigma}_{i} c_{i}=N_{J} \sigma_{J} c_{J}+N_{L} \sigma_{L} c_{L}$
$\mathrm{R}_{\mathrm{i}}^{2}$, The squared multiple corelation coefficient for the regression, on criterion i.

$$
\mathrm{R}_{\mathrm{i}}^{2},=\hat{\beta}_{\mathrm{i}}^{\prime} \mathrm{c}_{\mathrm{i}}^{\prime}
$$

$\mathrm{R}_{\mathrm{V}}^{2}$. The squared multiple correlation coefficient for the regression on cluster I ,

$$
\mathrm{R}_{\mathrm{I}}^{2}=\hat{\beta}_{\mathrm{I}}^{\prime}{ }_{\mathrm{C}}=\frac{1}{\mathrm{~N}_{\mathrm{I}}^{2} \sigma_{\mathrm{I}}^{2}}\left[\mathrm{~N}_{\mathrm{J}}^{2} \sigma_{\mathrm{I}}^{2} \mathrm{R}_{\mathrm{J}}^{2}+\mathrm{N}_{\mathrm{L}}^{2} \sigma_{\mathrm{L}}^{2} \mathrm{R}_{\mathrm{L}}^{2}+\mathrm{N}_{\mathrm{J}} \mathrm{~N}_{\mathrm{L}} \sigma_{\mathrm{J}} \sigma_{\mathrm{L}}\left(\hat{\beta}_{\mathrm{J}}^{\prime} c_{\mathrm{L}} \hat{\beta}_{\mathrm{L}}^{\prime} \hat{\mathrm{c}}_{\mathrm{J}}\right)\right]
$$

G_{s}, The set of s criterion clusters present at the s cluster stage.

$$
\quad G_{s}=\left\{I_{1}, I_{2}, \ldots, I_{s}\right\}
$$

${ }_{s} \mathrm{R}^{2}$, The squared multiple correlation coefficient for the criterion grouping, G_{s}, at the scluster stage.

$$
\mathrm{N} \sigma_{\mathrm{os}}^{2} \mathrm{R}^{2}=\sum_{\mathrm{I} \in \mathrm{G}_{\mathrm{S}}} \mathrm{~N}_{\mathrm{I}}\left(\sigma_{\mathrm{I}}^{2} \mathrm{R}_{\mathrm{I}}^{2}+\mathrm{M}_{\mathrm{I}}^{2}\right)-\mathrm{Nm}_{\mathrm{O}}^{2}
$$

$$
\text { Let } G_{s}=\left\{\mathrm{J}, \mathrm{~L}, \mathrm{~K}_{3}, \ldots, \mathrm{~K}_{\mathrm{s}}\right\} \text { and }
$$

$$
\therefore \quad G_{s-1}=\left\{\mathrm{J} \cup L, \mathrm{~K}_{3}, \ldots, \mathrm{~K}_{\mathrm{s}}\right\} \text { then }
$$

$$
\left.{ }_{s} R^{2}-{ }_{s-1} R^{2} \equiv \frac{N_{J} N_{L}}{N_{\mathrm{o}}^{2}\left(N_{J}+N_{L}\right)}\left[{ }_{\sigma_{\mathrm{J}}}^{2} R_{J}^{2}+\sigma_{\mathrm{L}}^{2} R_{\mathrm{L}}^{2}+\left(\mathrm{M}_{\mathrm{J}}-\mathrm{M}_{\mathrm{L}}\right)^{2}-\sigma_{\mathrm{J}} \partial_{\mathrm{L}} \hat{\beta}_{\mathrm{J}} \mathrm{c}_{\mathrm{L}}+\hat{\beta}_{\mathrm{L}}{ }^{\mathrm{c}_{\mathrm{J}}}\right)\right]
$$

APPENDIX B: MATHEMATICAL BACKGROUND

Mathematical Model for the Clustering Algorithm

Suppose that a set of p independent variables, $\mathrm{v}^{\prime} \equiv \equiv^{\prime}\left(\mathrm{v}_{1}, \ldots, \bar{v}_{\mathrm{p}}\right)$, are linearly related to the expected yalues of each of k criteria, $Y_{1}^{\prime}, \ldots Y_{k}$; that is,
(1) $E\left(Y_{i} \mid v\right)=v^{\prime} b_{i}+\alpha_{i} \quad$ for $i=1, \ldots, k$,
where b_{i} is a pxl vector of unknown population parameters and α_{i} is an unknown population constant. Let $y_{i d}$ be an $n_{i} x l$ vector of independent observations on criterion Y_{i}, let X_{i} be an $n_{i} x p$ matrix of observations on the set of p independent variables w_{4} where the j-th element of y_{i} corresponds to the j-th row of X_{j}, and let u_{i} be an $n_{i} \times 1$ vector in which each element is 1 . Then from (1),
(1a) $E\left(y_{i} E X_{i}\right)=X_{i} b_{i}+u_{i} \alpha_{i} \quad$ for $i=1, \ldots, k$.
Let $N=n_{1}+\ldots+n_{k} ;$ let $Y^{-} \equiv\left[y_{1}, \ldots, y_{k}^{\prime}\right]$, the $1 x N$ vector obtained by pooling all the criterion observations;

$$
X=\left[\begin{array}{rcccccr}
\mathbf{u}_{1} X_{1} & .0 & 0 & . & . & . & 0 \\
0 & \mathbf{u}_{2} X_{2} & 0 & . & . & . & 0 \\
0 & . & . & . & . & . & u_{k} X_{k}
\end{array}\right]
$$

the $\operatorname{Nkk}\left(p^{+1}\right)$ block diagonal matrix obtained by placing the $n_{1} x(p+1)$ matrix of observations $\left[u_{i} X\right]_{]}^{\text {in }}$ the i -th block diagonal position, and let $\mathrm{b}^{\prime} \equiv\left[\alpha_{1} \mathrm{~b}_{1}^{\prime} \ldots \alpha_{\mathrm{k}} \mathrm{b}_{\mathrm{k}}^{\prime}\right]$; the $\mathrm{k}(\mathrm{p}+1)$ vector of unknown parameters. Under the assumption that the criterion observations are independent and have common variance, the mathematical model for the clustering algorithm is
(1b) $E(Y \mid X)=X b$ with $D(Y \mid X)=\sigma^{2} I$,
where $\mathrm{D}(\mathrm{Y} \mid \mathrm{X})$ is the dispersion matrix of the criterion observations, σ^{2} is the common variance, and I is the NxN identity mątrix.

Minimum Vpriance Unbiased Estimation and Hypothesis Testing

The $k(p+1) x l$ vector b of unknown parameters in (1b) correspond to the k equations in (la). The minimum variance unbiased estimates (mvue), $\hat{\alpha}_{i}$ and \hat{b}_{i}, of α_{i} and b_{i} are obtained from (1 b) by the method of least squares; where
(2)

$$
\begin{aligned}
& \hat{b}_{i}=\left[X_{i}^{\prime} X_{i}-\frac{\underline{1}}{n_{i}} X_{i}^{\prime} u_{i}^{\prime} u_{i}^{\prime} x_{i}\right]^{-1}\left[X_{i}^{\prime} y_{i}=\frac{1}{n_{i}} X_{i}^{\prime} u_{i}^{\prime} u_{i}^{\prime} y_{i}\right] \\
& \hat{\alpha}_{i}=\frac{1}{n_{i}} \ddot{u}_{i}^{\prime} y_{i}-\frac{\overline{1}}{\bar{n}_{i}} u_{i}^{\prime} X_{i}^{\prime} \hat{b}_{i}
\end{aligned}
$$

These are the estimates that would be obtained by the method of least squares from the k separate models
(3) $E\left(y_{i} \mid X_{i}\right)=X_{i} b_{i}+u_{i} \alpha_{i}$ with $D\left(y_{i} \mid X_{i}\right)=\sigma^{2} \bar{I} \quad$ for $i=1, \ldots, k$
where the error variance, \dot{o}^{2}, is the same for each mddel. It might be that some or all of the equations in (1) are identical. The technique of homogeneity of regression can be used to-test the equality of vectors of regression parameters across several criteria. Chipman and Rao (1964) and Theil (1970) have developed methods for obtaining mivue under general linear restrictions and for testing general linear hypotheses. Rao (1965 , pp $189=190$) shows that in the case
(4) $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})=\mathrm{Xb}$ with $\mathrm{D}(\mathrm{Y} \mid \mathrm{X}) \equiv \sigma^{2} \overline{\mathrm{I}}$,
where X is $n \times s$ of rank s and b ' is sxl, the mvue, \hat{b}_{Ψ} for b under the linear restriction
(4a) $\Psi b=0$ is
(4b) $\hat{b}_{\Psi}=\bar{B}\left(B^{\prime} X^{\prime} X \bar{B}\right)^{-1} \bar{B}^{\prime} X^{\prime} Y$
where Ψ is rXs of rank \bar{f}, B is $s x(s-r)$ of $\operatorname{rank}(s-r)$, and $\Psi \bar{B}=0$. Rao obtains this result by intreducing the general solution, $B \theta$, where θ is an ($\mathrm{s}-\mathrm{r}) \times 1$ vector of new parameters, of (4a) into (4) to obtain the model
(5) $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})=\mathrm{XB} \theta$ with $\mathrm{D}(\mathrm{Y} \mid \mathrm{X})=\sigma^{2} \mathrm{I}$
and no restrictions on θ. The muve, $\hat{\mathrm{B}} \theta$, of $\mathrm{B} \theta$ is $\mathrm{B} \hat{\theta}$ (see Rao, 1965, pp. 181-182), where $\hat{\theta}$ is the mupe of θ-in (5). If, in addition to (4), Y has a multivariate normal distribution, then Chipman and Rao develop an expression for an unbiased critical regien of size θ for the following hypothesis:"
(6) $\Psi_{1} b=0$ given that $\Psi_{0} b=0$
where $\Psi T_{1} r_{1} \times s$ of rank r_{1}, Ψ_{0} is $r_{0} x s$ of rank r_{0}, and $\Psi^{\prime} \equiv\left[\Psi_{0}^{\prime} \Psi^{\prime} \Psi_{1}^{\prime}\right.$ is $s x\left(r_{0}+r_{1}\right)$ of rank ($r_{0}+r_{1}$). The expression for the unbiased critical region of size θ is
(7) $\quad\left\{F \left\lvert\, F=\left(\frac{n-s+r_{0}}{r_{1}}\right) \quad\left(\frac{E X S S}{E S S H}\right)=\left(\frac{n-s+r_{0}}{r_{1}}\right)\left(\frac{R_{\Psi \Psi_{0}}^{2}-R_{\Psi}^{2}}{1-R_{\Psi}^{2}}\right)>\bar{F}_{\theta}\left(r_{1}, n-s+r_{0}\right)\right.\right\}$,
where $\mathrm{F}_{\theta}\left(\mathrm{r}_{1}, \mathrm{n}-\mathrm{s}+\mathrm{r}_{\mathrm{O}}\right)$ is the upper $100(1-6) \%$ point of the central F distribution with r_{1} and $\mathrm{n}-\mathrm{s}+\mathrm{r}_{\mathrm{o}}$ degrees of freedom, and

$$
\begin{aligned}
& \text { - ESSH }=\left(\mathrm{Y}-\mathrm{Xb}_{\Psi_{0}}\right)^{\prime}\left(\mathrm{Y}-\mathrm{Xb}_{\bar{\Psi}}^{o}{ }_{\mathrm{o}}\right), \\
& \operatorname{EXSS}=\left(\mathrm{Y}-\hat{X}_{\mathrm{b}_{\Psi}}\right)^{\prime}\left(\mathrm{Y}-\mathrm{Xb}_{\Psi}\right)-\overline{\mathrm{ESS}}(\mathrm{H},
\end{aligned}
$$

$\hat{b}_{\Psi_{0}}$ is the mule of b under the restriction $\Psi_{0} b=0$,
\hat{b}_{Ψ} is the mvue of b under the restriction $\Psi b=0$,
$\mathrm{R}_{\Psi_{\rho}}^{\frac{\Psi}{2}}$ is the squared multiple correlation under the restriction
$\Psi_{0}{ }_{0}=0$, and
R_{Ψ}^{3} is the squared multiple correlation under the restriction
$\Psi b=0 . \quad, \quad$
The Chipman and Rao computational fofm for F is different from the form in (7), but the two are equivalent. (See Rao, 1965, pp. 199-200),

MVUE for a Criterion Cluster

. The restriction $\alpha_{1}=\alpha_{2} \equiv \ldots \equiv \alpha_{t}$ and $b_{1} \equiv b_{2} \bar{亏}_{7}^{2} \ldots=b_{t}$ can be expressed in the form $\Psi b=0$ as

where I is the $(p+1) \times(p+1)$ identity matrix. To express model (1 b) in a form similar to equation (5) under the above restriction (8), the $k(p+1) x(k-t+1)(p+1)$ matrix B, where

26

and the $(k-t+1)(p+1)$ vector of new parameters θ, where

$$
\theta^{\prime}=\left[\alpha_{\Psi} b_{\Psi} \alpha_{t+1} b_{t+1} \ldots \alpha_{k} b_{k}\right]
$$

is introduced into (1b) to yield the model

The effect of B is to pool the observations for criteria $1, \ldots, t$. The muve $\hat{\alpha}_{\Psi}$ and \hat{b}_{Ψ}, for the criterion cluster ($1,2, \ldots, t$) formed from criteria $1, \ldots, t$ can be calculated in either of two ways: pool the observations as in (9) and compute $\hat{\alpha}_{\Psi}$ and $\hat{\mathrm{b}}_{\Psi}$ from the normal equations

$$
\left(g_{9}\right)\left\{\left[\begin{array}{l}
n_{1} u_{1}^{\prime} x_{1} \\
x_{1}^{\prime} u_{1}^{\prime} x_{1}^{\prime} x_{1}
\end{array}\right]+\ldots+\left[\begin{array}{c}
n_{t} u_{t}^{\prime} x_{t} \\
x_{t}^{\prime} u_{t} x_{t}^{\prime} x_{t}
\end{array}\right]\left\{\left[\begin{array}{l}
\hat{\alpha}_{\Psi} \\
\hat{b}_{\Psi}
\end{array}\right] \equiv\left\{\left[\begin{array}{l}
u_{1}^{\prime} y_{1} \\
x_{1}^{\prime} y_{1}^{\prime}
\end{array}\right]+\ldots+\left[\begin{array}{l}
u_{t}^{\prime} y_{t} \\
x_{t}^{\prime} y_{t}
\end{array}\right]\right\}\right.\right.
$$

or if the predictor sums-of-squares and cross-product matrices are proportional, i.e.,

$$
\text { (9b) } \frac{1^{\prime}}{n_{1}}\left[\begin{array}{l}
n_{1} u_{1}^{\prime} x_{1} \\
x_{1}^{\prime} u_{1} \\
x_{1}^{\prime} x_{1}
\end{array}\right]=\frac{1}{n_{2}}\left[\begin{array}{ll}
n_{2} & u_{2}^{\prime} X_{2} \\
X_{2}^{\prime} u_{2} & X_{2}^{\prime} x_{2}
\end{array}\right]=\ldots=\frac{1}{n_{t}}\left[\begin{array}{lll}
n_{t} u_{t}^{\prime} X_{t} \\
X_{t}^{\prime} u_{t} x_{t}^{\prime} x_{t}
\end{array}\right]
$$

then $\hat{\alpha}_{\Psi}$ and \hat{b}_{Ψ} can be calculated from $\hat{\alpha}_{1}, \hat{b}_{1}, \ldots, \hat{\alpha}_{t}$, and \hat{b}_{t} given in (2 $\bar{\chi}$ without forming the sum of matrices on the left hand side in (9i). Using (9b) this sum of matrices is

$$
\begin{aligned}
& =\sum^{\frac{t}{n}} \frac{n_{i}}{N_{t}}\left[\begin{array}{l}
n_{i} u_{i}^{\prime} x_{i} \\
x_{i}^{\prime} u_{i} x_{i}^{\prime} x_{i}
\end{array}\right]^{-1}\left[\begin{array}{c}
u_{i}^{\prime} y_{i} \\
x_{i}^{\prime} y_{i}
\end{array}\right] . \\
& i=1
\end{aligned}
$$

Thus, the muog for a criterion cluster are

$$
\left[\begin{array}{l}
\hat{\alpha}_{\Psi} \tag{10}\\
\hat{b}_{\Psi}
\end{array}\right]=\frac{n_{1}}{\hat{N}_{t}}\left[\begin{array}{l}
\hat{\alpha}_{1} \\
\hat{b}_{v}
\end{array}\right]+\ldots+\frac{n_{t}}{\tilde{N}_{t}}\left[\begin{array}{l}
\hat{\alpha}_{t} \\
\hat{b}_{t}
\end{array}\right]
$$

When (9b) holds, the formula for the standardized regression weights for a criterion cluster is easy to obtain. Let $\hat{\beta}_{\Psi}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{t}$ be the standardized weights corresponding to the raw weights $\hat{b}_{\psi}, \hat{b}_{1}, \ldots, \hat{b}_{t}$; let Q_{i} be the pxp diagonal matrix with its elements equal to the standard deviations calculated from the observation matrix X_{i} for the pindependent variables; let Q_{Ψ}, be the pxp diagonal matrix with its elements. equal to the standard deviations calculated from the pooled observation matrix $\left[X_{1} X_{2}^{*} \ldots X_{t}\right]$ for the p independent variables; and let $\sigma_{\Psi}^{2}, \sigma_{1}^{2}, \ldots, \sigma_{t}^{2}$, be the sample variances for the vectors of criterion observations $\left[y_{i} y_{i} \ldots y_{i}\right]^{\prime}, y_{1} \ldots y_{t}$, respectively. By definition the standardized weights are

$$
\hat{\beta}_{\Psi^{\prime}}=\frac{Q_{\Psi} \dot{b}_{\Psi}}{\sigma_{\Psi}}, \hat{\beta}_{1}=\frac{Q_{1} \hat{b}_{1}}{\sigma_{1}} \ldots, \beta_{t}=\frac{U_{t} b_{t}}{\sigma_{t}}
$$

- From (9b), $Q_{\Psi}=Q_{1}=\ldots=Q_{i}$; therefore using (10), the fomula for the standardized weights for a criterion cluster is

$$
(10 a) \hat{\beta}_{\Psi}=\frac{1}{N_{t} \sigma_{\Psi}}\left(n_{1} o_{1} \hat{\beta}_{1}+\ldots+n_{t} o_{t} \hat{\beta}_{t}\right)
$$

Multiple Correlation Coefficient for a Criterion Cluster

Let $R_{\underline{i}}^{2}, R_{i}^{2} \ldots, \mathcal{R}_{t}$ be the squared multiple correlation coefficients for the criterion cluster formed from criteria $1, \ldots, . t$ and for the t criteria y_{1}, \ldots, y_{t}, respectively; let c_{i} be the pxl vector of intercorrelations calculated from the observations X_{i} and y_{i} between the p independent variables and the i-th criterion; and let c_{Ψ} be the p_{xl} vector of intercorrelations calculated from the pooled observations $\left[X_{1}^{\prime} X_{2}^{*} \ldots X_{t}^{\prime}\right]^{\prime}$ and $\left[y_{i}^{\prime} y_{2}^{\prime} \ldots y_{t}^{\prime}\right]^{\prime}$ between the p independent variables and the criterion cluster $(1,2, \ldots$, t). By definition,

$$
\begin{aligned}
& n_{i} \sigma_{i} Q_{i} c_{i}=X_{i}^{\prime} y_{i}-\frac{1}{n_{i}} X_{i}^{\prime} u_{i} u_{i}^{\prime} y_{i} \quad \text { for } i=1, \ldots, k \text { and } \\
& N_{t} o_{\Psi} Q_{\Psi} c_{\Psi}=\left(X_{1}^{\prime} y_{1}+\ldots+X_{t}^{\prime} y_{t}\right)-\frac{1}{N_{t}}\left[X_{i}^{\prime} u_{1}+\ldots+X_{1}^{\prime} u_{t}\right]\left\lceil u_{i}^{\prime} y_{t}+\ldots+u_{t}^{\prime} y_{t}\right] . \\
& \text { From (} 9 \mathrm{c} \text {) } \frac{1}{N_{t}}\left|X_{i}^{\prime} u_{i}+\ldots+X_{t}^{\prime} u_{i}\right|=\frac{1}{n_{i}} X_{i}^{\prime} u_{i} \text {, for } i=1, \ldots, t \text {. Therofore, }
\end{aligned}
$$

$$
N_{t} \sigma_{\Psi} Q_{\Psi} c_{\Psi}=n_{1} \sigma_{1} Q_{1} c_{1}+\ldots+n_{t} o_{t} Q_{t} c_{t}
$$

But $Q_{Y}=Q_{i}=\ldots=Q_{t}$ so the validity codficients for a criterion cluster are

$$
22 \quad 2
$$

$(10 b) c_{\psi}=\frac{1}{N_{t} \sigma_{\psi}}\left(\bar{n}_{1} \sigma_{1} c_{1}+\ldots+n_{t} 0_{t} c_{t}\right)$
The squared multiple correlation coefficient for the cluster.
$(1,2, \ldots, t)$ is

$$
(10 c) R_{\Psi}^{2}=\hat{\beta}_{\Psi} c_{\Psi}=\frac{1}{N_{t}^{2} 0_{V}^{2}}\left(n_{1} o_{1} \hat{\beta}_{t}+\ldots+n_{t} o_{1} \hat{p}_{t}\right)^{\prime}\left(n_{1} o_{1} q_{1}+\ldots+n_{t} o_{1} c_{t}\right)^{\prime}
$$

Hypothesis Testing

The critagal region given in (7) for the hypothesis (6) requires the catculation of the errof sum of squares or the squared muttiple eorrelation cocficient for model (1 b) when restrictions ge mposed on the unknown parameters. The errot sum of squars, ISS, for model ($1 b$) when there tre no resirietionstn the unknown parameters is equal to the sum of the erom sum of squares, ESS E_{i}, the the models (see (3), i.e:
$\mathbf{E S S}=\mathrm{ESS}_{1}+\mathrm{ISS}_{2}+\ldots+\mathrm{ESS}_{\mathrm{k}}$
Let m_{0} and o_{0}^{2} be the criterion mean and variance saleulated from the pooled eriterion obsenation vector Y, and let m_{1}, \ldots, m_{k} be the criterion means for y_{1}, \ldots, y_{k}, respectively. Then .

$$
\begin{align*}
& \mathrm{SG}_{\mathrm{i}}=n_{1} o_{i}^{2}\left(1-\mathrm{R}_{\mathrm{i}}^{2}\right) \text { for }-1, \ldots k \\
& \mathrm{~N} m_{0}=n_{1} m_{1}+n_{2} m_{2}+\ldots+n_{k} m_{k} \\
& \mathrm{~N} \sigma_{0}^{2}=n_{1}\left(\sigma_{1}^{2}+m_{1}^{2}\right)+\ldots+n_{k}\left(\sigma_{k}^{2}+m_{k}^{2}\right)
\end{align*}
$$

Therefore the squared multiple correlation, R^{2}, for (1 b) is

The ermen sum of spates, ISSD, for (9) is

$$
\mathrm{SSSH}=\mathrm{PSS}_{4}+\mathrm{HSS}_{t+1}+\ldots+1 \mathrm{SS}
$$

$$
\begin{array}{r}
R_{0}^{2} \neq N_{0}^{2} \operatorname{ISSH} \\
N_{0}^{2}+\infty
\end{array}
$$

The ${ }^{2}$ gothesis (8) can be nested at the a signticane level by computing
(11a) $:\left(\begin{array}{cc}N & k(p+1) \\ (1 & 1)(p+1)\end{array}\right)\left(\begin{array}{cc}R^{2} & R_{i}^{2} \\ 1 & R^{2}\end{array}\right)$
and rejecting (8) if F exceds the $100(\mathrm{t}$ w. point of the rental F distibution with (t $1 \times p+1)$ and N $k(p+1)$ degrees of freedom.

Amilication to a Four Criterin Model; a Worked Example

greatest predictive power is attained when cach enterion variable is predicted from its reptestion on the independent variables. The initial stage ie . Stage 4, cmploys the following nodel

$$
\begin{aligned}
& (12) \mathrm{E} \cdot\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{1} \\
y_{4}
\end{array}\right]=\left[\begin{array}{lllll}
u_{1} x_{1} & 0 & 0 & 0 \\
0 & u_{2} x_{2} & & 0 & 0 \\
0 & 0 & u_{1} x_{1} & & 0 \\
0 & 0 & 0 & u_{4} x_{4}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
h_{1} \\
\alpha_{2} \\
b_{1} \\
a_{3} \\
b_{1} \\
a_{1} \\
b_{4}
\end{array}\right]=\left[\begin{array}{l}
a_{1} u_{1}+b_{1} x_{1} \\
\alpha_{2} u_{2}+b_{2} x_{2} \\
a_{1} u_{2}+h_{2} x_{1} \\
x_{4} u_{4}+b_{4} x_{4}
\end{array}\right] \text { with } 0 \quad\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=0^{2} 1 \\
& \text { 4x } 4 \text { 4. }+1
\end{aligned}
$$

 ${ }_{4} \mathrm{R}^{2}$. for model (12) is ohtamed firm (11).
 $b_{1}=b_{2}$, the nume b_{1} : and \hat{b}_{12}, for the citefonderter (1,2) formed fromeriterial and are (see (10))

$$
\left[\begin{array}{l}
\hat{a}_{12} \\
\hat{h}_{12}
\end{array}\right]=\frac{n_{1}}{\left(n_{1} n_{1}\right)}\left[\begin{array}{l}
\hat{n}_{1} \\
\hat{n}_{1}
\end{array}\right]+\frac{n_{2}}{n_{1}+n_{2}}\left[\begin{array}{l}
\hat{n}_{2} \\
\hat{n}_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \hat{H}_{1}, \quad \therefore \quad 1 \quad\left(\mathrm{H}_{1} \hat{O}_{1} \hat{\beta}_{1}+\mathrm{H}_{2} \mathrm{H}_{2} \hat{\beta}_{2}\right)_{, ~ i n d} \\
& \left(\mathrm{H}_{1} \mathrm{H}_{3}\right) \mathrm{O}_{\mathrm{i}} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{i} R^{2} \quad\left[\left(n_{1}+n_{2}\right)\left(1_{12}^{2} R_{12}^{2}+n_{12}^{*}\right)+n_{1}\left(n_{1}^{2} R_{1}^{2}+\left(11_{1}^{2}\right)+n_{4}\left(0_{4}^{2} R_{41}^{2}+m_{4}^{2}\right) \quad N_{111}^{2}\right]\right. \\
& \left.\Rightarrow \quad\left[\left(I_{1}+n_{2}\right) M_{12}^{2}+1 m_{12}^{2}\right)+n_{1}\left(u_{1}^{2}+11_{1}^{2}\right)+n_{4}\left(0_{4}^{2}+m_{4}^{2}\right) \mathrm{Nin}_{1}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (111+112) \\
& \mathrm{Nim}_{0} \quad \mathrm{H}_{1} \mathrm{HI}_{1}+\mathrm{H}_{2} \mathrm{~m}_{2}+\mathrm{H}_{1} \mathrm{H}_{1}+\mathrm{n}_{4} \mathrm{~m}_{4}
\end{aligned}
$$

未i
(11a) can now be used to test at the α significance level the hypothesis $H 1: \alpha_{1}=\alpha_{2}$ and $b_{1}=b_{2}$ by computing
$\&_{8} \quad F=\left(\frac{N-4(p+1)}{(p+1)}\right)\binom{R^{2}-R^{2}}{\left(I-{ }_{4} R^{2}\right)}$
and rejecting 111 if F exceeds $\mathrm{F}_{\alpha}(\mathrm{p}+1, \mathrm{~N}-4(\mathrm{p}+1))$.
For Stage ${ }^{3}$, accepting 111 as true, the additional restrictions $\alpha_{3}=\alpha_{4}$ and $b_{3}=b_{4}$ are imposed and the muve, $\dot{\alpha}_{14}$ and \dot{b}_{34}. Lor the criterion cluster $(3,4)$ formed frome erteria 3 and 4 are 4

$$
\left[\begin{array}{l}
\alpha_{14} \\
\hat{b}_{34}
\end{array}\right]=\frac{n_{3}}{n_{3}+n_{4}} \quad\left[\begin{array}{l}
\hat{a}_{3} \\
\hat{b}_{3}
\end{array}\right]+\frac{n_{4}}{n_{3}+n_{4}}:\left[\begin{array}{l}
\dot{\alpha}_{4} \\
\hat{b}_{4}
\end{array}\right]
$$

Thestandard weights, β_{34}, and the validities, e_{34}, For the cluster $(3,4)$ are

$$
\begin{aligned}
& \because \hat{\beta}_{34}=\frac{1}{\left(n_{3}+n_{4}\right) \sigma_{34}}\left(n_{3} o_{3} \hat{\beta}_{3}+n_{4} \sigma_{4} \hat{\beta}_{4}\right), \text { and } \\
& c_{34}=\frac{1}{\left(n_{3}+n_{4}\right) o_{34}\left(n_{3} o_{3} c_{3}+n_{4} o_{4} c_{4}\right), \text { where }} \\
& \left(n_{3}+n_{4}\right) u_{34}^{2}=n_{3}\left(\sigma_{3}^{2}+m_{3}^{2}\right) i_{n_{4}}\left(\sigma_{4}^{2}+m_{4}^{2}\right)-\frac{\left(n_{3} n_{3}+n_{4}\left[n_{4}\right)^{2}\right.}{\left(n_{3}+n_{4}\right)}
\end{aligned}
$$

The model used toobtain these estimates is

$$
\begin{aligned}
& \text { with } \mathrm{D}
\end{aligned}
$$

The squared multiple correlation coefficient, R^{2}, for (14) is (from (11) with $\mathrm{k}=2$)

$$
\left.N_{k}^{2}-\frac{\left[\left(n_{1}+n_{2}\right)\left(0_{12}^{2} R_{12}^{2}+m_{12}^{2}\right)+\left(n_{3}+n_{4}\right)\left(\sigma_{34}^{2} R_{34}^{2}+m_{34}^{2}\right)-N m_{0}^{2}\right]}{\left[\left(n_{1}+n_{2}\right)\left(0_{12}^{2}+m_{12}^{2}\right)+\left(n_{3}+n_{4}\right)\left(\sigma_{34}^{2}+11_{14}^{2}\right)-N n_{0}^{2}\right.} \quad, \quad{ }_{3}\right] \quad,
$$

 sipnticance level the hypothesis $\quad \therefore$ 多
112. $\alpha_{3}=\alpha_{4}$ and $h_{1}=h_{4}$ given ll is itue by computing

$$
F \because\binom{N(p+1)}{(p+1)}=\left(\begin{array}{cc}
R^{2} & R^{2} \\
(1, & \left.R^{2}\right)
\end{array}\right)
$$

and rejecting 122^{2} if I^{\prime} exoceds $I^{\prime}(p+i, N, \quad 3(p+1))$.
Equation (I la) can atso be used to lest the hypoyesis
H1): $\alpha_{1}-\alpha_{2}, h_{2} \alpha_{2}, \alpha_{1} a_{1}$, and $b_{3}=b_{4}$ by computing

$$
25: 2 \cdots
$$

$$
E=\left(\frac{N-A(p+1)}{2(p+1)}\right)\left(\frac{R^{2}-2 R^{2}}{1-R_{4} R^{2}}\right)
$$

and rojecting $H \mathcal{B}$ If F oxceds $F_{\alpha}(2(p+1), N-4(p+1))$.
For Stage 1, accepting $1 / 2$ as true, the addit lonadrestict ions $\alpha_{12}=\alpha_{34}$ andy $b_{12}=b_{34}$ are imposed and

$$
\left[\begin{array}{l}
\hat{\alpha}_{1234} \\
\hat{b}_{1234}
\end{array}\right]=\frac{\left(n_{1}+n_{1}\right)}{N}\left[\begin{array}{l}
\hat{\alpha}_{12} \\
\hat{b}_{12}
\end{array}\right]+\frac{\left(n_{3}+n_{4}\right)}{N}\left[\begin{array}{l}
\hat{a}_{34} \\
\hat{b}_{34}
\end{array}\right]
$$

The standard weights, $\hat{\rho}_{1234}$, and the validides, c_{1234}, for the cluster $(1,2,3,4)$ are

$$
\begin{aligned}
& \mathcal{L} \int_{1234}=\frac{1}{N \sigma_{1234}}\left(n_{1}+i_{2}\right) o_{12} \widehat{\beta}_{12}+\left(n_{3}+n_{4}\right) \sigma_{34} \beta_{34} \text {, and } \\
& \Rightarrow \quad \hat{c}_{123}=\frac{1}{N \sigma_{1234}} \quad\left(n_{1}+\pi_{12}\right) o_{12} c_{12}+\left(n_{3}+n_{4}\right) o_{34} c_{34} \text { - where } \\
& \therefore \quad \mathrm{Na}_{1234}^{2}=\left(n_{1}+n_{3}\right)\left(\sigma_{12}^{2}+\mathrm{ml}_{12}^{2}\right)+\left(n_{1}+n_{4}\right)\left(a_{34}^{2}+m_{34}^{2}\right)+\mathrm{Nm}_{1234}^{2} \text { and } \\
& \mathrm{Nm}_{1,134}=\mathrm{n}_{2} \mathrm{~m}_{1}+n_{2} \mathrm{~m}_{2}+\mathrm{n}_{3} \mathrm{~m}_{3}+n_{4} \mathrm{~m}_{4} .
\end{aligned}
$$

The niodel used to obtain the estimates for cluster $(1,2,3,4)$ is.

The squared multiple correlation coefficient, \mathbf{R}^{2}, for (15) is

$$
\mathrm{I}^{2}=\hat{\beta}_{1234}^{\prime} \mathrm{c}_{1234}{ }^{\circ}
$$

Equation (lla) cannow be used to test at the os significance level the hy pothesis
${ }_{14}: \alpha_{12}=\alpha_{34}$ and $b_{12}=b_{34}$, given $\alpha_{1}=\alpha_{2}, \alpha_{3}=\alpha_{4}, b_{1}=b_{2}$ and $\mathbf{b}_{3}=\boldsymbol{b}_{4}$ by comp uting g

$$
F=\left(\frac{N-2(p+1)}{(p+1)}\right)\left(\frac{\mathbf{R}^{2}-R^{2}}{\left(1-R^{2}\right)}\right)
$$

and rejecting H 4 if F exceeds $\mathrm{F}_{\mathrm{a}}(\mathrm{p}+1, \mathrm{~N}-2(\mathrm{p}+1)$). The ,

$$
H 5: \alpha_{1}=a_{2}=\alpha_{3}=\alpha_{4} \text { and } b_{1}=b_{2}=b_{3}=b_{4}
$$

can be tested at the α signifteance level by computirag

$$
F=\left(\frac{N-4(p+1)}{3(p+1)}\right) \cdot\left(\frac{4 R^{2}-1 R^{2}}{\left(1-4 R^{2}\right)}\right)
$$

and rejecting $\mathbf{H} 5$ if F exceeds $\mathrm{F}_{\alpha}(3(\mathrm{p}+1) ; \mathrm{N}-4(\mathrm{p}+1))$.

